
i

Università degli Studi di Trento

Corso di Laurea Magistrale in Informatica

System Identification for Adaptive
Software Systems - A Case Study

Final Thesis

Laureando/Graduant:

Genci Tallabaci

Relatore/Supervisor:

Prof. John Mylopoulos

28 Marzo 2012

Abstract

In software domain, a self-adaptive software system is able to modify its behavior

at run-time, in order to respond to the user requirements changes, environmental

changes, but also obsolete domain assumptions. Self-adaptive software changes

behavior when it is not performing what it was intended for or possibly be-

cause its functionality/performance can be improved. Recently, Control Theory

and feedback loops have been exploited in adaptive software system design. In

this thesis, we propose an evaluation of the System Identification process for an

existing system. This process makes use of a new class of requirements, namely

Awareness Requirements, concerning other requirement’s status at runtime. This

approach is reasoning over requirements at runtime in order to provide adaptivity

to a software system. By adopting System Identification approach it is possible

to model, design and implement a self-adaptive system. In this experiment we

evaluated System Identification approach with an available case study (an Auto-

mated Teller Machine (ATM)).

1

Acknowledgements

It would not have been possible to write this thesis without the help, guidance and

support of the kind people around me. I am sincerily thankful to my supervisor,

prof. John Mylopoulos, for his guidance, support and great patience at all times.

Thanks to Vitor E.S. Souza for his good advices, support and for all the time

dedicated to answer all my questions. Finally, I would like to thank my family

and friends who supported me at all times.

3

Contents

Contents 4

1 Introduction 5

1.1 Motivation . 6

1.2 Objectives . 7

1.3 Methodology . 7

1.4 Organization of the thesis . 8

2 Research Baseline 9

2.1 Goal Oriented Requirements Engineering (GORE) 9

2.2 Awareness Requirements . 11

2.3 System Identification . 15

3 Related Work 19

4 Case Study 25

4.1 Case Study Description . 25

4.2 ATM Goal Model . 30

5 Awareness Requirements for the ATM system 33

5.1 Formalizing Awareness Requirements 43

6 System Identification 47

6.1 Goal Oriented Requirements Model 47

6.2 Goal Model Parameters in ATM system 49

7 Conclusions and Future Work 55

Bibliography 59

4

Chapter 1

Introduction

To design self-adaptive computational systems, one can take inspiration from

nature [6]. Living organisms have an amazing ability to adapt to a changing en-

vironment, both in the short term (phenotypic plasticity) and in the longer term

(Darwinian evolution). Indeed, most complex organisms exhibit traits that seem

desirable in self-adaptive software, like system monitoring (senses, awareness);

short-term changes in priorities (stress reactions, sleep); system reconfiguration

(muscle growth, calluses); self repair (tissue healing); intrusion detection/elim-

ination (immune systems); and maintaining state through transitions (gradual

acclimation to a new environment). The complexity of software systems is contin-

uously growing, making researchers focus on self-adaptivity as a way of decreasing

complex system’s management costs. Different approaches include feedback loops

for designing adaptive systems. In this way, system’s requirements satisfaction

will be monitored and in case of failures or possible improvement in performance,

some adaptive actions will be triggered.

Requirements Engineering as a branch of Software Engineering deals with the

elicitation and analysis of system requirements. Requirements Engineering makes

use of goal models to analyze and model what the stakeholders are interested in.

In these models hard-goals represent the functional requirements while soft-goals

represent the non-functional requirements. It is very important for the system

to meet its requirements, but ’what if any requirement fails?’ The system re-

quirement’s need to be monitored at run-time. In case any requirement is failing

the system needs to adopt some actions in order to avoid such failures. Souza et

al. [10] introduced a new class of requirements, called Awareness Requirements

that leads to a feedback functionality, dealing with the run-time status of the

system requirements. The Awareness Requirements represent a starting point

for the implementation of an adaptivity process. Their evaluation at run-time

provides the indicators of requirements convergence. In other words, it is pos-

5

6 CHAPTER 1. INTRODUCTION

sible to measure if the functional requirements are met or the non-functional

requirements have been satisfied, or rather what is the satisfaction degree for

the non-functional requirements. Moreover, the System Identification [9] process

determines the equations that regulate the dynamic behavior of the system. In

this phase, information on how to improve indicators in case of failure will be

obtained. All this information will be represented as an extended and parame-

terized requirements model. Some of these parameters comes directly from the

model, but some of them are identified during the System Identification process.A

change in any parameter is considered an adaptation action to be applied to the

target system. These parameters changes will be performed by the controller.

This thesis presents the evaluation of the System Identification process on an

ATM (Automated Teller Machine) system, implemented by S. Liaskos. A re-

quirements goal model is also provided along with the implemented software.

1.1 Motivation

The first step in the software development process is requirements analysis and

specification. This process is critical to the success of the development process. It

encompasses all the actions that are going to determine what the objectives/needs

the software has to fulfill are. The designer cannot foresee every condition under

which the system has to operate or even eventual requirements modification, pos-

sible failures or environmental change. High variability software can deliver the

proper functionalities in multiple ways. If any of this ways is failing, the system

can switch to an alternative way. For instance, if an Automated Teller Machine

(ATM) system cannot successfully dispense cash on a customer’s request it should

print a compensation token that a customer can withdraw in any of the banks

desks. Recently, researchers have been looking into self-adaptivity as a way of

lowering management costs of complex systems. One possible way to do that is

by exploiting high variability of a software system in order to deliver self-repair

functionalities by means of re-configuration.

System identification process determines the rules that govern the dynamic be-

havior of the system. For repairing system behavior after any requirements failure

or possible optimization the best reconfiguration must be selected. The chosen

reconfiguration is going to minimally reconfigure the system from its current re-

configuration . Extending the ATM system into a self-adaptive ATM system with

self-repair capabilities, it is going to support the failure’s recovery and possible

improvements in performance. Self-adaptation will positively contribute to the

system robustness, but on the other hand it is not guaranteed that the new re-

configuration will positively contribute in terms of quality of service. The System

Identification process is making use of a new class of requirements, AwReqs, con-

cerning the requirements’ status at run-time. In the case that any requirement is

1.2. OBJECTIVES 7

failing, the equations generated during this phase will be used by the controller

for conducting parameter tuning in order for the system to meet its purpose. The

new adaptive ATM system will perform an assessment of failures at runtime and

recover from such failures by changing its parameters.

1.2 Objectives

The objective of this thesis is to evaluate the proposal introduced by Souza et

al. [9] using the Automated Teller Machine (ATM) case study. The ATM software

should support a computerized banking network to fulfill its functionalities. An

automatic teller machine accepts a cash car, interacts with the user, communi-

cates with the bank computer to carry out the transaction, dispenses cash, prints

receipts and so forth. During the evaluation of the Awareness Requirements,

it will be possible to obtain information about what requirements are satisfied,

denied or canceled. The System Identification process uses all the information

gathered in the Awareness Requirements evaluation and will produce fundamen-

tal information, the equations that regulates the dynamic behavior of the system.

These equations will be used by the controller in order to decide how to perform

adaptive actions, by means of a parameter change. The objective of this thesis is

to make use of the ATM requirements model along with the information gathered

from the Awareness Requirements evaluation in order to determine the equations

that regulates the dynamic behavior of the system. During the System Identifi-

cation evaluation will be identified information on what adaptation actions are

needed. This process is important in order to decide not only what should be the

possible recovering actions but even more useful in order to prevent from failures.

1.3 Methodology

By applying a requirements engineering perspective in this thesis, we described

the application of System Identification process on an existing system. The sys-

tem considered in this laboratory demonstration is an Automated Teller Ma-

chine (ATM) simulation. By applying this approach to the ATM simulation it is

possible to transform the exiting software system into an adaptive system with

self-repair functionality. The system used in this demonstration is implemented

by S. Liaskos. A requirements goal model is build up from the models provided

from Liaskos and Wang. During System Identification it will be provided with a

new set of parameters capturing different behaviors of the system. At the end of

the process, the system requirements model will be extended and parameterized

by a new set of parameters. Fundamental information about self repair capabil-

ity of the system can be inferred by applying the notion of differential relations

between such parameters and the indicators of requirements convergence. The

8 CHAPTER 1. INTRODUCTION

indicators of requirements convergence will be provided from the evaluation of

Awareness Requirements at run-time. The feedback loop needs to compare the

reference input (system requirements) against the measured output (measurable

characteristic of the target system). In other words it will check whether the

system requirements were met. Awareness Requirements (AwReqs) will be iden-

tified from the requirements goal model. The elicitation process uses the goal

model by exploiting critical goals/tasks, metricizing soft-goals and also consid-

ering the goal refinement. The requirements should be written in patterns and

then formalized using OCLTM [7]. In this way they can be directly monitored by

a framework and by using OCLTM it is possible to talk about the requirements

status at different time points. The process of conducting system adaptation is

described in the following sections.

1.4 Organization of the thesis

The structure of the thesis : section 2 summarizes research baselines used in this

proposal; section 3 compares the proposal to the related work; section 4 repre-

sents the original case study; section 5 describes the Awareness Requirements,

describing also a formalization patterns; section 6 presents the System Identi-

fication process for the proposed case study and the last section presents the

conclusions.

Chapter 2

Research Baseline

This section highlights the research background on Goal-Oriented Requirements

Engineering (2.1), Awareness Requirements (2.2) and a systematic process for

System Identification (2.3).

2.1 Goal Oriented Requirements Engineering (GORE)

Goals represents an important component in the requirements engineering (RE)

process. They capture the various objectives a system has to achieve. Goal-

Oriented requirements engineering uses goals for eliciting, specifying and ana-

lyzing requirements. Figure 2.1 shows an example for an Ambulance Dispatch

System (ADS) goal model [9].

Figure 2.1: Goal Model for an Ambulance Dispatch System [3]

9

10 CHAPTER 2. RESEARCH BASELINE

Goal-Oriented Requirements Engineering (GORE) [3] makes use of funda-

mental notions like, goals, softgoals, domain assumptions (DAs) and quality con-

straints (QCs). Goals can be functional (hard goals) dealing with the underlying

services that the system is expected to deliver and non-functional (softgoals) refer

to the expected quality of service, such as security, usability, and so forth. Goals

can be refined into sub-goal that specify how the goals are fulfilled. If a goal

G is AND decomposed in G1...Gn then all of the sub-goals must be satisfied in

order for G to be satisfied.If a goal G is OR decomposed in G1..Gn then at least

one of the sub-goals must be satisfied in order for goal G to be satisfied. For

example, to receive an emergency call, one has to input its information, deter-

mine its uniqueness (are there other calls from the same emergency?) and send

it to the dispatcher, all of this on the assumption that Communication networks

[are] working. On the other hand, periodic update of an ambulances status can

be performed either manually or automatically. The refinements continue until

they reach a level of granularity such that for each task there is an actor able

to perform it. Soft-goals represent non-functional requirements, meaning what is

expected in terms of quality of service. Goals and tasks can contribute positively

or negatively to the satisfaction of sub-goals, but for the soft-goal there is no

clear-cut criteria for deciding whether a softgoal is satisfied or not. Softgoal sat-

isfaction can be estimated by using qualitative contribution links that propagate

either satisfaction or denial and will have four levels of contributions:

break (- -), hurt (-), help (+) and make (+ +).

E.g. selecting an ambulance using the software system contributes positively

to the proximity of the ambulance to the emergency site, while using a man-

ual ambulance status update, rather than automatic, contributes negatively to

the satisfaction of the proximity softgoal. Quality Constraints (QCs) represent

measurable criteria for evaluating whether a soft-goal is satisfied. In terms of

refinement, a soft-goal can be refined into quality constraints, which are mea-

surable metrics to evaluate how the system is achieving the soft-goal. In the

example shown in Figure 2.1, unambiguity is measured by the number of times

two ambulances are dispatched to the same location. On the other hand, fast

assistance is refined into two QCs: ambulances arriving within 10 minutes to

the emergency site and ambulances arriving within 15 minutes to the emergency

site. Finally, Domain Assumptions (DAs) indicate states of the world, what is

assumed to be true in order for the system to work. E.g. in the ADS system,

it is assumed that communications networks (phone, internet connection, etc)

are available and functional. If such assumption turn to be false, its parent goal

Receive Emergency Call will not be satisfied.

2.2. AWARENESS REQUIREMENTS 11

2.2 Awareness Requirements

In Control Theory [1], a reference input represents the desired value of measured

outputs. Figure 2.2 shows the various elements in a Control System.

Figure 2.2: Elements of a Control System [1]

The measured output represents measurable characteristics of the system.

Control input is manipulated in order to affect the output. The transducer trans-

lates the measured output in order to check if the measured outputs meet the

reference input. The control error shows the difference between what is expected

and what is measured on the system. If the output tells that the reference input

is not achieved then the controller adjusts the control input in order to meet the

measured output. At the requirements level, the reference input is represented by

the system requirements, including not only basic requirements like goals, task,

DAs but also AwReqs.

Figure 2.3: Adaptive system as control system [11]

Figure 2.3 shows a view of an adaptive system as a control system [11]. The

measured output shows the requirements convergence, meaning the failure rate

12 CHAPTER 2. RESEARCH BASELINE

of any requirement. If the output shows that the requirement has failed then

the controller will perform some parameter change in order to bring the system

to an acceptable state. The reference input is represented by the requirements,

the measured output consists of indicators of requirements convergence, meaning

that it is important to measure if functional requirements are met at runtime.

AwReqs (Awareness Requirements) are introduced as a new class of requirements

that talk about the success/failure of other requirements. AwReqs talk about

the states requirements can assume during their execution at runtime. Figure 2.4

shows these states that can be assumed by goals, tasks, DAs, QCs and AwReqs

themselves. When an actor starts to pursue a requirement, its result is yet

Undecided. Eventually, the requirement will either have Succeeded, or Failed.

For goals and tasks, there is also a Canceled state.

Figure 2.4: States of the requirements

Different types of AwReqs have been identified [10] such as regular, aggre-

gate, delta and trend AwReqs.

• The simplest form of AwReq namely regular AwReq refers to require-

ments that should never fail. If a task needs to be executed, an instance

of this task will be created and a ’never fail’ constraint has to be checked.

When a goal needs to be fulfilled, an instance of the goal is created and

the constraint has to be checked. Instead, for the domain assumptions and

quality constraints, their instances are created when their parent goal needs

to be fulfilled. In this context their truth/falsity needs to be verified.

• Aggregate AwReq refers to instances of other another requirement and

imposes constraints on their success/failure rate. Aggregate AwReq can

also precisely tell the period of time to be considered. The verification

frequency is an optional parameter. Some other aggregate AwReq can also

specify the success/failure rate of the requirements in terms of min/max

values allowed. Also, different requirements can be combined in order to

2.2. AWARENESS REQUIREMENTS 13

compare the success rates of requirements. This can be helpful at runtime

when based on the desired property changes need to be performed in order

to satisfy a goal/softgoal.

• Delta AwReq can be used to underline the acceptable thresholds for the

requirement satisfaction, such as achievement time. Another pattern speci-

fies that it is possible to talk not only about success/failure of requirements

but also about the change of state, meaning that it is not important that

a requirement will succeed/fail but in this case the requirement would not

be in the Undecided state for more than a specified amount of time.

• Trend AwReq compares the success rates over periods of time in order

to keep track of the evolving of the rates over time.

• Meta AwReq are AwReq that talk about other AwReqs. They are useful

in system reconciliation actions. It is also possible to model meta-meta-

AwReq referring to a meta-AwReq. Different levels of meta-AwReqs can

be created by referring the requirements from the directly below level of

requirements.

Like other types of requirements, AwReqs must be systematically elicited.

Since they refer to the success/failure of other requirements, their elicitation

takes place after the basic requirements have been elicited and the goal model

have been constructed. There are several sources of AwReqs.

• One obvious source consists of the goals that are critical for the system-to-be

to fulfill its purpose. If the aim is to create a robust and resilient system,

then there have to be goals/tasks in the model that are to be achieved/ex-

ecuted at a consistently high level of success. Such a subset of critical goals

can be identified in the process and AwReqs specifying the precise achieve-

ment rates that are required for these goals will be attached to them. This

process can be viewed as the operationalization of high-level non-functional

requirements (NFRs) such as Robustness, Dependability, etc.

• Similarly, AwReqs are applied to DAs that are critical for the system.

• Also AwReqs can be derived from softgoals. Quality Constraints (QCs) are

identified in order to metricizes high-level softgoals. This way the system is

able to quantitatively evaluate at runtime whether the quality requirements

are met over large numbers of process instances and make appropriate ad-

justments if they are not.

• In Tropos and other variations of goal modeling notation, alternatives in-

troduced by OR-decomposed goals are frequently evaluated with respect to

14 CHAPTER 2. RESEARCH BASELINE

certain softgoals. The evaluations are qualitative and show whether alter-

natives contribute positively or negatively to softgoals. Softgoals are refined

into QCs and the qualitative contribution links are removed. AwReqs can

be used as a tool to make sure that good alternatives are still preferred over

bad ones.

AwReqs have been introduced as requirements that refer to other require-

ments in terms of their success/failure. Before monitoring the requirements

another important task is to formalize such requirements in order to facili-

tate the successive steps of the adaptivity process, like elicitation/analysis

and also for improving communication between analysts and designers. Re-

quirements can be specified in a variant of the Object Constraints Language

(OCL), called OCLTM - meaning OCL with temporal message logic. With

OCLTM it is possible to consider particular requirements in different peri-

ods of time. In order to formalize such requirements in OCLTM , it is helpful

to represent systems requirements in a UML class diagram. OCLTM con-

straints refer to the class of requirements and their instances, attributes

and methods.

2.3. SYSTEM IDENTIFICATION 15

2.3 System Identification

In Control Theory, when the measured system output is not matching the ref-

erence input (system requirements), the controller will perform some parameter

change in order to bring the system in an acceptable state. System identification

is the process that captures the effects of the control input on the measured sys-

tem outputs. It aims to provide a systematic process for identifying the relations

that regulate the behavior of the system. A common approach is to start from a

partial knowledge of the system behavior and try to identify what are the relation

holding between parameters and indicators, without going into details of what

happens in the system. The system identification process proposed from Souza

et al. [9] uses a Requirements Engineering (RE) perspective and assume that

the requirement model of the system is available. The process is characterized

by several steps and in order to pursue a more precise process,process steps can

be applied iteratively. The input of the process is a requirements goal model

and by applying the various steps will be possible to obtain more information on

the system behavior. The first step of this process concerns with the indicators

identification. The indicators represent the monitored values that can be used

as feedback. Not all the possible variables will be monitored, but a subset of

the most relevant ones has to be identified and after that monitored. Indicators

are important values that provide information related to the performance of the

adaptive system. The AwReqs represent requirements that refer to other require-

ments success/failure, and by stating the desired success rate for the goals/tasks

and also the satisfaction criteria for the NFRs, they will be used as a starting

point for the indicator identification in the system. The second step refers to the

parameters identification. As mentioned before, in the requirements model

the indicators are represented by the AwReqs. In this step all the possible varia-

tions that can affect the indicators will be explored. After that, these parameters

can be exploited in order to improve the performance of the system, react to

possible changes of requirements, react to possible failures and so forth. Varia-

tion Points (VP) and Control Variables (CV) represent the possible variations.

These are the parameters that the system will monitor and manipulate. Also, an

important phase of this step concerns parameter elicitation. In this phase, it can

be helpful to search for possible reconfiguration for potential AwReqs failures. A

VP can be identified by looking at the OR-decompositions in the goal model,

which represent intentional variability in the system. Choosing a different path

at a VP in order to fulfill a goal is a possible way for system re-configuration.

CVs have an important role in system re-configuration. They can be applied

to goals/tasks/domain assumptions and are used as abstractions over families

of similiar goals. They represent other possible alternatives for goals, tasks or

DAs, and parameters will be identified from such abstractions. After that, the

requirements model will be enriched with these parameters. One of the most

16 CHAPTER 2. RESEARCH BASELINE

important aspects on having CVs in the requirements model is represented by

the possibility of having a large but slightly different alternatives represented in a

compact fashion in the model. For the CV elicitation, the requirements engineer

should pay particular attention during the goal model refinement. In summary,

the system identification process needs as its input a requirement goal model and

will provide as its output a set of qualitative differential equations. VPs and CVs

will be attached to the model. The next step concerns the differential relations

identification, in which the requirements engineer will capture every possible

dependency between the indicators and the parameters. There are some heuris-

tics that can be helpful with this task. In the case of VPs, softgoal contribution

links capture this dependency. Another heuristic is to link indicators with the

parameters that appear in the subtrees of the nodes to which the indicators are

linked. The key idea is that if any parameter is linked to the goal G’s subtree,

the change in the parameter will also affect the subtree.

In order to underline how parameters affects the indicators, an indicator is

defined as a function of some parameter.

indicator = f(parameter)

By using the derivative, it is possible to say how changes of parameters are

propagated to indicators. If the derivative is positive, by increasing the value

of the parameter the indicator will increase (e.g. success rate of some goal will

increase), and vice versa by decreasing the parameters value, the success rate of

any goal also will decrease.

Using the Leibnizs notation

4indicator

4parameter
> 0

As evidenced by the fraction, there is an increase-increase relation if the

derivative fraction (i.e. 4x/4y > 0) is positive and the analogous decrease-

decrease relation is also inferred in the case of a positive derivative fraction.

The opposite decrease-increase relation can be inferred in the case of a negative

derivative fraction. In order to improve writability a more simplified linearized

notation is used. Because the parameters assume only discrete values, we used

4x/4y instead of dx/dy. The notification will be

4 (〈indicator〉 /parameter) > 0

Also the concept of landmarks values is used in order to specify an interval

in which the relation between control variable and an indicators holds, meaning

that out of this interval increasing the parameter will not increase the success

rate of the desired goal.

4 (〈indicator〉 /parameter) [0, landmark value] > 0

2.3. SYSTEM IDENTIFICATION 17

The last step of the process concerns the refinement of the relations. Once

the relations have been identified, the parameters that refer to the same indicator

can be compared or combined. The requirements engineer sometimes may need

to compare various relations and evaluate which of these strategies is the best

reconfiguration. These adaptation strategies are stated by the notification ex-

plained before, what makes easier the evaluation of different alternatives. Also if

more than one parameter affects positively some indicator, these parameters can

also be combined. When the indicator/parameter relations need to be combined

for the evaluation of the possible alternatives, it is very important to consider

only relations concerning the current system reconfiguration. The system identi-

fication process can be applied iteratively. After each possible iteration the model

will be enriched by an updated set of parameter-indicator relations.

Chapter 3

Related Work

A definition of Self Adaptive Software was provided in a DARPA Broad Agency

Announcement on Self Adaptive Software (BAA-98-12) in December of 1997:

”Self Adaptive Software evaluates its own behavior and changes behavior when the

evaluation indicates that it is not accomplishing what the software is intended to

do, or when better functionality or performance is possible.” [4] In such software

systems there are several ways of fulfilling their purpose and the effective changes

will be done at runtime. The software should have some functionalities in order

to evaluate its performance and behavior. It must be able to reconfigure its

operations in order to improve its performance if needed. In [8], Salehie et al.

proposed how the adaptation can/need to be applied. They introduced different

approaches :

• Static/Dynamic Decision-Making. This approach deals with how the deci-

sion process can be constructed and modified. In the static way the decision

process is hard-coded (e.g. like a decision tree) and modifying it requires

recompilation for some of the systems components. In the dynamic decision

making, policies and rules are defined externally so their modification can

be performed during run-time to create/change behavior for both functional

or non-functional requirements.

• External/Internal Adaptation. The adaptation approach is divided in two

categories with respect to the adaptation mechanism and the application

logic. The figure 3.1 describes both the internal/external approaches that

can be adopted for Self-adaptive software systems.

19

20 CHAPTER 3. RELATED WORK

Figure 3.1: Internal and External Approach for Self-Adaptive Software System [8]

– Internal Approach is based on the programming language features,

such as conditional expressions, parameterizations and exceptions. This

approach can be useful for local adaptation (e.g. exception handling)

and needs global information about the system. It can be realized by

extending existing programming language features or by introducing

a new adaptation language.

– External Approach uses an external adaptation engine containing adap-

tation processes. As described in the figure 3.1, the adaptive software

system consists of an adaptation engine and an adaptable software.

The external engine implements adaptation logic by using a policy

engine and by the support of middleware. The advantage of the ex-

ternal approach consists on the fact that the adaptation engine can be

reused and some adaptation processes can be applied also to various

applications.

• Making/Achieving Adaptation. The first strategy consists of engineering

self-adaptivity into the system at the developing phase. The second one is

to achieve self-adaptivity through adaptive learning. Making has an implied

software engineering view to engineer adaptivity into the software system.

Achieving has an implied artificial intelligence and adaptive learning view

to achieve adaptive behavior.

21

Some proposals for adaptive system design use a goal-oriented approach for

system requirement specification. KAOS has been used to specify adaptive sys-

tem requirements. It also included runtime monitors of system requirements

derived form the KAOS specification. Feather et al. [2] discussed adaptation

semantics in adaptive systems and implicitly specified adaptation semantics with

event-condition action rules. Their approach focused on monitoring requirements

conditions that trigger adaptation. The KAOS approach also uses a graphical

representation for specifying adaptation semantics. Zhang and Chang [14] use

KAOS goal models to explicitly specify the adaptation semantics by introduc-

ing an extension to LTL called Adapt operator-extended LTL (A-LTL). They

extended LTL with the adapt operator (
Ω−→) in order to specify adaptation be-

havior. This operator is used as A
Ω−→ B, indicating that the adaptive software

initially satisfies A and in a later state, it stops being obligated to satisfy A and

starts to satisfy B. The A-LTL specifications of the adaptation semantics can be

used in the specification of adaptive systems and can be checked for consistency,

correctness, dynamic insertion of adaptive code into an adaptive system, etc.

Zhang and Chang [14] identified three adaptation semantics:

1. One-point adaptation. The one-point adaptation is characterized by the

system adapting from the source program to the target program at a specific

point in execution. In this case the system adapts after it receives an

adaptation request.

2. Guided adaptation. The guided adaptation is characterized by the system

restricting the source program and retaining its source program behavior

before a safe state is reached. The system then converts via an adaptation

to the target program.

3. Overlap adaptation. The overlap adaptation is characterized by an overlap

of the source and target programs. The system monitors the input and

eventually stops the source program when appropriate, where the target

program may have been executing before the source program stops execut-

ing.

22 CHAPTER 3. RELATED WORK

Lapouchnian used a hybrid goal-oriented modeling technique [5] for goal mod-

eling and system configuration. In his approach the system features are defined

along with the possible adaptations and determine when to perform such adap-

tation actions.

Wang and Mylopoulos [13] proposed a framework that exploits high-variability

in software systems for delivering self-adaptive capabilities through reconfigura-

tion. The framework

1. monitors systems operations for failures

2. diagnoses root causes when failures occurs

3. identifies the actual failure when multiple diagnoses explain monitored data

4. generates a system reconfiguration for avoiding the failed operation

Goals and tasks are associated with preconditions, postconditions and mon-

itoring switches. Preconditions and postconditions (effects) are propositional

formulae in Conjunctive Normal Form (CNF). Monitoring switches are Boolean

flags that can be switched on/off to indicate whether the corresponding require-

ment is monitored. Also they associate softgoals with three priority levels: high,

medium or low. This prioritization is used during the reconfiguration selection,

meaning that the reconfiguration that contributes most positively to softgoals

of higher priorities is going to be selected. The framework contains monitoring,

diagnostic, reconfiguration and execution components.

Figure 3.2: An Architectural View [13]

Figure 3.2 shows an overview of the architecture. The monitoring component

monitors requirements at different levels of granularity, collects the complete

log data and saves them to a Log Database. The selected data are passed to the

diagnostic component. For reducing diagnostic overhead a subset of the complete

log data are passed to the diagnostic component. This component analyzes the

23

information contained to infer if some requirement has failed. The diagnosing

problem is transformed into a SAT problem by encoding goal model relations

and log data into a propositional formula that is satisfied if and only if there is a

diagnosis. If a denial is found, the component returns either a single diagnosis or

multiple competing diagnoses each of them identifying different task/goal denials.

Than the reconfiguration component computes the best reconfiguration that is

free of failures. This component uses different algorithms, based on performance.

It can use an algorithm for finding the most optimal global configuration if the

performance is not important or can use an algorithm for fast failure recovery

when performance matters. The appropriate configuration is after that passed

to the execution component. If the configuration is the same as the behavior of

the system, then no modifications are made. Otherwise, the component executes

any necessary action to bring the system to a consistent state. In this approach,

the basis for the monitoring, diagnosing and adaptation is represented by system

requirements.

In the approach introduced by Souza et al. [9], techniques from Control The-

ory have been exploited in order to design systems that can use feedback loops as

a adaptation tool. This approach is built from Requirements Engineering land-

scape, introducing a new class of requirements [10]. Such requirements lead to

feedback loops, important for the adaptations strategy. AwReqs, the new class of

requirements, refers to the runtime success/failure of other requirements. Quali-

tative Reasoning is used in this approach for introducing a systematic way of the

identification of configuration parameters and qualitative relations among them.

A change in each of these parameters represents a possible re-configuration to be

adopted by the system for the achievement of the objectives.

Chapter 4

Case Study

The main objective for an ATM (Automated Teller Machine) is to support com-

puterized banking network.

4.1 Case Study Description

The software controls a simulated ATM having a magnetic stripe reader for read-

ing an ATM card, a keyboard and display for interaction with the customer, a

slot for depositing envelopes, a dispenser for cash (in multiples of 20 euro), a

printer for printing customer receipts, and a key-operated switch to allow an op-

erator to start or stop the machine. The ATM also communicates with the bank’s

computer by using a communication link. The ATM will service one customer at

a time. A customer will be required to insert an ATM card and enter a personal

identification number (PIN) - both of which will be sent to the bank for validation

as part of each transaction. The customer will then be able to perform one or

more transactions. The card will be retained in the machine until the customer

indicates that he/she desires no further transactions, at which point it will be

returned - except as noted below.

Figure 4.1 shows the action a13: select transaction, in order for the goal g12:

conduct transaction to be fulfilled the transaction type needs to be selected and

then the action will be performed. Figure 4.2 shows the list of transactions that a

customer can perform after authenticating himself by inserting a card and typing

the personal PIN.

25

26 CHAPTER 4. CASE STUDY

Figure 4.1: Conduct trans-
action

Figure 4.2: Select transaction type

The services provided to the customer are the following :

1. A customer must be able to make a cash withdrawal from any suitable

account linked to the card, in multiples of 20.00 euro. Before the withdrawal

an approval must be obtained from the bank by checking the customer’s

account. In order to fulfill g14: withdraw, first of all the system needs

to get customer withdrawal specifics. It means that the system needs the

information about the withdrawal account, from which to withdraw and

it needs the customer to insert the desired withdrawal amount. Figure 4.8

shows the AND-decomposition focusing on the a14: get withdrawal account

in the goal model. Figure 4.4 shows the account from which to withdraw.

Figure 4.3: Get withdrawal
account

Figure 4.4: Select account to withdraw

4.1. CASE STUDY DESCRIPTION 27

Figure 4.5 shows the And-decomposition mentioned above by focusing on

the a15: textitget withdrawal account and figure 4.6 gives a snapshot of

how it is implemented in the system.

Figure 4.5: Get withdrawal
account

Figure 4.6: Select withdrawal amount

2. A customer must be able to make a deposit to any account linked to the

card. The customer may use cash but also a check inserted in an envelope.

The customer will enter the amount of the deposit into the ATM. The

envelope will be removed from the machine by an operator that will proceed

after that to a manual verification. Approval must be obtained from the

bank before physically accepting the envelope. Figure 4.7 shows the task

a20 for the account selection in the goal model and the Figure 4.8 shows

the account selection implementation for a deposit transaction.

Figure 4.7: Get deposit ac-
count

Figure 4.8: Insert deposit account

28 CHAPTER 4. CASE STUDY

Figure 4.9, on the other hand shows the part of the model concerning the

insertion of the amount to deposit and figure 4.10 gives a implementation

snapshot of this action.

Figure 4.9: Get deposit
amount

Figure 4.10: Insert deposit account

3. A customer also must be able to make a balance inquiry of any account

linked to the card. Figure 4.11 shows the account selection action in the

goal model and the figure 4.12 shows the inquiry selection action as it is

implemented.

Figure 4.11: Balance Inquiry Ac-
count selection Figure 4.12: Inquiry account selec-

tion

Figure 4.13 gives a view of the task a30: perform inquiry transaction of the

goal model. Again, figure 4.14 shows how the balance inquiry transaction

is displayed at the system. The ATM will communicate each transaction

to the bank and obtain verification that it was allowed by the bank. If

the bank determines that the customer’s PIN is invalid, the customer will

be required to re-enter the PIN before a transaction can proceed. If the

customer is unable to successfully enter the PIN after three tries, the card

will be permanently retained by the machine, and the customer will have to

4.1. CASE STUDY DESCRIPTION 29

Figure 4.13: Perform inquiry trans-
action

Figure 4.14: Balance Inquiry display

contact the bank to get it back. If a transaction fails for any reason other

than an invalid PIN, the ATM will display an explanation of the problem,

and will then ask the customer whether he/she wants to do another trans-

action. The ATM will provide the customer with a printed receipt for each

successful transaction, showing the date, time, machine location, type of

transaction, account(s), amount, and total and available balance(s) of the

affected account. Figure 4.15 shows an example of a withdrawal receipt

after a withdrawal transaction. The ATM will have a an operator panel

Figure 4.15: Withdrawal print receipt

with a key-operated switch (located on the ”inside the bank” side) that

will allow an operator to start and stop the servicing of customers. When

the switch is moved to the ”off” position, the machine will shut down, so

that the operator may remove deposit envelopes and reload the machine

with cash, blank receipts, etc. The operator will be required to verify and

enter the total cash on hand before starting the system.

30 CHAPTER 4. CASE STUDY

4.2 ATM Goal Model

The goal model is provided from the system developers. This section gives a

brief description of the goal model. As showed in the figure 4.16, the main goal

for the system is to g1- provide ATM. The main goal is AND-decomposed in

three subgoals : g2-operator starts ATM, g3-serve customers and g4-operator

shutdown ATM. Than g4 is and AND-decomposed in task a1-turn on ATM, by

using a switch located on the inside the bank side, in g3-detect cash amount,

a4-set up connection to bank and in a5-make ATM available. The goal g3 is

OR-decomposed in a2-use cash sensor, where the operator uses a device for

detecting the cash amount, and in a3-use operator entry, a manual verification

performed by the operator. The softgoal reduce operator workload will have

positive/negative contribution based on how the goal g3 is fulfilled. The task

a2 helps its satisfaction but if the task a3 is executed than it will hurt the

softgoal satisfaction. On the other hand, the goal g4-serve customers is AND-

decomposed in g5-authenticate customer and in g11-conduct ATM session. The

goal g5 will be AND-decomposed in g6-get card info and in the task a9-check

valid card. The goal g6 will be subsequently refined providing several alternatives

for its achievement. As shown in figure 4.16, this part of goal model has a high

rate of contribution links between goals and softgoals of the system. If the goal

g8-customer enters card number is achieved, then the efficiency softgoal will

be denied. Otherwise, if the task a6-customer inserts card is executed, then it

will make the efficiency softgoal. On the other hand, if the task a6-customer

inserts card is executed, it will make the reduce customer workload or if the

goal g8-customer enters card number is achieved, the softgoal reduce customer

workload will be denied. In terms of usability, if the task a10-enter PIN from

keypad is executed, then it will help the usability softgoal, otherwise executing

the task a11-enter PIN from two-key keypad will negatively contribute to the

usability softgoal. Further on, the goal g9-authenticate customers with PIN is

AND-decomposed into the goal g10-get PIN and in the task a12-validate PIN.

If this task is executed, the softgoal security will be satisfied.

4.2.
A
T
M

G
O
A
L
M
O
D
E
L

31

Figure 4.16: ATM goal model [13]

32 CHAPTER 4. CASE STUDY

The goal g11-conduct ATM section is AND-decomposed in g11-conduct trans-

actions and the task a33-eject card. At a lower level the goal g12-conduct trans-

actions is AND-decomposed in task a13-select transaction and in g13-perform

transactions and g24-print receipt. The goal g13 will be refined into differ-

ent alternatives based on the type of transaction the customer selected, such as

withdraw, deposit or inquiry. The goal g24-print receipt is AND-decomposed in

a31-print and in a32-display. If the task a31-print is executed, it will positively

contribute the softgoal maintains physical records. But if the task a32-display

is executed, it will hurt that softgoal. Finally, the goal g25-operator shutdown

ATM is also AND-decomposed in task a34-make ATM unavailable, a35-close

connection to bank and in task a36-turn off ATM.

Chapter 5

Awareness Requirements for the

ATM system

AwReqs represents a new type of requirements, and as such they must be system-

atically elicited. Before their elicitation takes place the basic requirements must

have been elicited and the requirements goal model must have been constructed.

The model used in this experiment is a mixed model build up from the models

provided from S. Liaskos and Wang [13] representing all the system’s functional

and non-functional requirements. First of all, domain assumptions and quality

constraints in have been introduced into this model. Connection to banking net-

work available has been introduced as a DA for the goal g2:operator start ATM.

This assumption needs to be true for the goal to be achieved. On the other hand,

in order to achieve the goal g14:withdraw, the DA Cash dispenser never empty

needs to be true. Also constraints have been introduced in order to explicitly

provide a satisfaction criteria for the system softgoals. For the softgoal main-

tains physical record the QC will be:At least 95% of the requests are printed. On

the other hand, for the softgoal reduce customer workload the constraints will be:

• Customer performs withdrawal and deposit transactions within 3 minutes.

• Customer performs transfer and inquiry transactions within 6 minutess.

The first constraint refers to the withdrawal and deposit transactions, meaning

that for the customer it will take no more than 3 minutes to successfully handle

an withdrawal transaction. The second one refers to the transfer and inquiry

transaction, meaning that for the customer such transactions can be successfully

handled within 6 minutes. Figure 6.1 shows the extended ATM goal model,

produced by introducing DAs and QCs into the original goal model.

33

34
C
H
A
P
T
E
R

5
.

A
W
A
R
E
N
E
S
S
R
E
Q
U
IR

E
M
E
N
T
S
F
O
R

T
H
E

A
T
M

S
Y
S
T
E
M

Figure 5.1: Extended ATM Goal Model

35

The first step during the AwReqs elicitation is about the identification of

the goals/tasks that are critical for the system in order to achieve its purpose.

Also, critical domain assumptions and quality constraints are identified. The

goals/tasks identified are the requirements that need to have a consistently high

success rate. The goal g4: serve customers, represents a high-level goal and for

this requirement the failures must be very minimal. The failures for this require-

ment should be at most two, during each month. The goal g3: textitdetect cash

amount, and the task a4: set up connection to bank represent two critical re-

quirements because many activities will depend on their level of success. Also,

connection to banking network available and cash dispenser never empty are crit-

ical domain assumptions for the system. Also, the task a6: customer inserts

card and the task a31: print represent two critical tasks for the system. AwReqs

can be derived from softgoals. For the softgoal reduce customer workload two

QCs there have been introduced and to each of them the required success rate

is attached. The first QC specifies that Customer performs transaction within 3

minutes refers to the withdrawal and deposit transaction. The AwReq specifies

that if this is the case, then the success rate of such constraint must be satisfied

in 90% of the cases. The second QC states that Customer performs transaction

within 6 minutes, referring to the transfer transaction. Such transactions are

more complex than the ones mentioned above, so that the success rate for this

QC is required to be at 60%. In this way, it can be evaluated at runtime whether

such requirements are met over large number of system executions and if it is

not the case to make the related adjustment. The figure 5.2, gives a taste of the

graphical representation of the AwReqs introduced. Most of the requirements

introduced up to now are regular AwReqs.

36
C
H
A
P
T
E
R

5
.

A
W
A
R
E
N
E
S
S
R
E
Q
U
IR

E
M
E
N
T
S
F
O
R

T
H
E

A
T
M

S
Y
S
T
E
M

Figure 5.2: Graphical representation of some AwReqs

37

Other AwReqs have been elicited from the OR-decomposed goals. Some of

the AwReqs compare the success count of two requirements. The goal g7:get card

number, the OR decomposition shows that it can be achieved by the task a6:

customer inserts card or by achieving goal g8:customer enters card number. The

AwReq introduced here specifies that during the alternative selection the success

rate of selecting the task a6 will be 100 times higher than of the goal g8 for achiev-

ing the high-level goal get card number. In order to specify the desired property

for the alternative selection, other AwReqs have also been identified when the

goal g8:customers enters card number needs to be fulfilled. In this case, it is

specified that the task a7:enter number from keypad must have the success count

of 50 times more than the task a8 that asks the customer to insert card number

from two-key keypad. The same success count is specified during the fulfillment of

the goal g10:get PIN. The success count of the task a10:enter PIN from keypad

must be 50 times more than of task a11:enter PIN from two-key keypad. Com-

paring success counts specifies that ”good” alternatives are preferred over those

alternatives that negatively contribute the non-functional requirements. Goal

g3:detect cash amount can be achieved by executing the task a2:use cash sensor

or by executing the task a3:use operator entry. If the cash sensor is used, the

softgoal reduce operator workload will have a positive contribution, unlike if the

task a3 is performed. In that case this softgoal will have a negative contribution.

The task a13:select transaction represents a particular task, when the customer

have to decide the task to perform. A delta AwReqs talks about the change of

state for this requirement. It must be at the Undecided state for at most 30

seconds, after that it has to switch to a Succeeded (transaction is selected) or

Failed(user sections ended) state. Once the transaction is selected (task a13 is

successfully executed), new AwReqs that specify acceptable thresholds for the

fulfillment of subsequent requirements in terms of elapsed time are introduced.

So, after the transaction is selected, the goal g17:dispense cash and the task

a24:perform deposit transaction should be executed within 3 minutes. On the

other hand, the task a28:perform transfer transaction should be executed within

6 minutes from the successful transaction selection. Figure 5.3 shows a graph-

ical representation of the AwReqs elicited in the ATM goal model along with

other elements, such as DAs and QCs. AwReqs are represented as circles with

arrows pointing at the requirement they refer. If the AwReq is comparing success

rates/counts the first parameter is omitted, as the AwReq is pointing to it.

38
C
H
A
P
T
E
R

5
.

A
W
A
R
E
N
E
S
S
R
E
Q
U
IR

E
M
E
N
T
S
F
O
R

T
H
E

A
T
M

S
Y
S
T
E
M

Figure 5.3: Graphical representation of AwReqs elicited in the ATM goal-model

39

Table 5.2 shows the AwReqs identified during the ATM system analysis. Each

is provided with a brief description along with the type and pattern used for their

specification. The table refers to the Figure 5.3, page 28.

Id Description Type Pattern

AR1 Detect cash amount (g3)
should never fail

Regular NeverFail(T - DetectCashAm)

AR2 Set up connection to bank
(a4) should never fail

Regular NeverFail(T - SetUpConnect)

AR3 Print Receipt (g24) should
never fail

Regular NeverFail(T - PrintReceipt)

AR4 Connection to banking net-
work should have a ”high”
success rate

Aggregate SuccessRate(D - ComBankNet,
99%)

AR5 Cash dispenser never be
empty should have a ”high”
success rate

Aggregate SuccessRate(D - CashDispens,
99%)

AR6 Enter pin from keypad
(a10) should succeed ”much
more” times than enter pin
from two-key keypad (a11)

Aggregate ComparableSuccess(T - PinKey-
pad, T - Pin2Keypad,50)

AR7 Enter card number from key-
pad (a7) should succeed
”much more” times than en-
ter card number from two-
key keypad (a8)

Aggregate ComparableSuccess(T - PinKey-
pad, T - Pin2Keypad,50)

AR8 Reduce customer workload
less than 3 minutes should
succeed at 90% of the time,
Reduce customer workload
less than 6 minutes should
succeed at 60% of the time,
measured daily

Aggregate @daily SuccessRate(Q - Cust-
Work3mins, 90%) and Success-
Rate(Q - CustWork6mins,60%)

AR9 Serve customers (g4) should
fail at most twice in a month

Aggregate MaxFailure(G - ServeCustomer,
2, 30d)

AR10 Use cash sensor (a2) should
have a ”high” success rate
over one week periods

Aggregate SuccessRate(T - UseCashSen-
sor, 80%, 7d)

Table 5.1: AwReqs identified for the ATM system, their types and patterns

40 CHAPTER 5. AWARENESS REQUIREMENTS FOR THE ATM SYSTEM

AR1, AR2, AR3 are the simplest form of AwReqs, the requirements to

which they refer should never fail.

AR1 considers every instance of the referred requirement. Such instance is cre-

ated for every execution and the constraint ”never fail” should be checked for

every instance.

AR2 considers the task Set Up Connection to Bank (a4). It is a critical task for

the system. For each instance of this task, when created the constraint ”never

fail” should also be checked.

AR3 considers the goal Print Receipt (g24), that is Or-decomposed in two tasks:

Print (a31) and Display (a32). Once the customer selects to print out the re-

ceipt, this task should satisfy the constraint ”never fail”.

AR4 and AR5 are AwReqs applied to DAs (domain assumptions) that are

critical for the system. AR4 considers the domain assumption Connection to

Banking Network. It demands the referred DA to be true 99% of the time the

critical goals, such as Serve Customer(g4), etc. are attempted, . AR5 considers

the domain assumption, cash dispenser should not be empty should have a ”very

high” success rate. It demands the referred DA to be true 99% of the time the

critical goals/tasks, such as Dispense Cash (g17), etc. are attempted.

AR6 and AR7 compare success rates of two requirements. They refer to al-

ternative selection when deciding how to fulfill the goals: Get PIN (g10) and

Customers Enters Card Number (g8). Get PIN g10 is OR-decomposed into

the tasks: Enter Pin from Keypad (a10) and Enter Pin From Two-Key Key-

pad (a11). The goal Customers Enters Card Number is OR-decomposed into

the tasks: Enter Number From Keypad (a7) and Enter Number From Two-key

Keypad (a8). These OR-decompositions have contribution link to the softgoal

Usability, so different success rates are desired for the alternatives.

AR8 combines different requirements, integrating two QCs with different target

values. The customer workload in most of the cases should rise up to max 3 min-

utes for transactions like Withdraw (g14) and should rise up to max 6 minutes

for more complex transactions like Deposit (g18) or Transfer (g21).

AR9 refers to a critical goal (g4). In this case, goal g4 can fail at most two

times in one month.

AR10, AR11, AR12 and AR13 refer at the properties needed to meet in the

case of an alternative selection at runtime. To fulfill goal Detect Cash Amount

(g3) even the action Use Cash Sensor (a2) or Use Operator Entry (a3) can be

selected. This AwReq declares that the requirement a2 should have a ”high”

success rate, measured in one week.

41

Id Description Type Pattern

AR11 Use operator entry (a3)
should have a ”low” success
rate over one week periods

Aggregate SuccessRate(T - UseOperEntry,
20%, 7d)

AR12 Customer inserts card (a6)
should have a ”high” success
rate

Aggregate @SuccessRate(T - CustInsCard,
80%)

AR13 Customer inserts card (a6)
will succeed ”much more”
times than Customers enters
card number (g8)

Aggregate ComparableSuccess(T - CustIn-
sCard, G - CustEntCardNum,
100)

AR14 Select transaction (a13)
should be decided within 30
seconds

Delta StateDelta(T - SelectTransac-
tion, Undecided, *, 30sec)

AR15 If transaction = withdraw
dispense cash (g17) should
be successfully executed
within 3 min after select
transaction (a13) is suc-
cessfully executed, for the
same user section

Delta ComparableDelta(G - Dispense-
Cash, T - SelectTransaction,
time, 3min)

AR16 If transaction = deposit
Perform deposit transaction
(a24) should be successfully
executed within 3 minutes
after a successful execution
of select transaction (a13),
for the same user section

Delta ComparableDelta(T - Perfor-
mDepTrans, T - SelectTransac-
tion, time, 3min)

AR17 If transaction = transfer
Perform transfer transaction
(a28) should be successfully
executed within 6 minutes
after a successful execution
of select transaction (13),
for the same user section

Delta ComparableDelta(T - Perform-
TransTrans, T - SelectTransac-
tion, time, 6min)

AR18 AR8 should never fail Meta NeverFail(AR8)

Table 5.2: AwReqs identified for the ATM system, their types and patterns

42 CHAPTER 5. AWARENESS REQUIREMENTS FOR THE ATM SYSTEM

Instead, in AR11 states the desired success rate for the requirement Use Op-

erator Entry (a3). It should have a ”low” success rate measured weekly.

AR12 states the desired success rate for the requirement (a6). In the achieve-

ment of the goal Get Card Number (g7) it is declared that the requirement a6

should have a ”high” success rate.

AR13 shows the comparison between the success rates of two requirements. This

could be helpful when deciding at runtime an alternative selection. It declares

that the requirement a6 should succeed ”much more” times than the requirement

Customer Enters Card Number (g8).

AR14 as a delta AwReq specifies acceptable thresholds for the fulfillment of the

requirement, in this case the task Select Transaction (a13). It specifies that the

task a13 should be satisfied (successfully finish execution) within 30 seconds.

AR15, AR16 and AR17 are delta AwReqs that talks about the state of the

requirements.

AR15 shows that the requirement Successfully Dispense Cash (a18) should leave

the state Undecided within 3 minutes after Select Transaction (a13) is satisfied

(successfully executed).

Also the AwReqs AR16 states that the requirement Perform Deposit Trans-

action (a24), should leave the state Undecided within 3 minutes after Select

Transaction (a13) is satisfied (successfully executed).

AR17 refers to the maximum thresholds for a requirement Perform Transfer

Transaction (a28) to leave the Undecided state, in other words the most im-

portant issue is that the requirements should leave this state within 6 minutes.

AR18 is a meta AwReq that refers to another AwReqs. It demands that the

AwReq AR8 should never fail.

5.1. FORMALIZING AWARENESS REQUIREMENTS 43

5.1 Formalizing Awareness Requirements

As expressed before AwReqs are just requirements that refer to the success or

failure of other requirements. The language selected to formalize such require-

ments is OCLTM [10]. With OCLTM , requirements are considered as first class

citizens and make it possible to talk about status of particular requirements at

different time points. The approach uses:

• design time requirements (modeled as a goal model and AwReqs elicited

previously)

• run-time instance requirements, as such as various transactions or requests

Each requirement of the system is represented by a UML class extending the

appropriate class of the diagram. The first letter of each class name indicates

which element is extended (G for Goal, T for Task and so on). In Figure 5.4

the requirements are represented in a UML class diagram. This represents an

important step before formalizing the requirements in OCLTM language because

OCLTM constraints refer to classes and their instances, attributes and methods.

This classes are only abstract representations of the elements of the system goal

model and they will be part of a monitoring framework in the future.

Figure 5.4: Requirements Class Model [10]

44 CHAPTER 5. AWARENESS REQUIREMENTS FOR THE ATM SYSTEM

Figure 5.5 shows the formalization of the AwReqs. In this section, AwReqs are

represented in a formal language, which will be important during the monitoring

process.

Figure 5.5: AwReqs formalization in OCLTM

The invariants specify that instances of AR1 :T - DetectCashAmount,

AR2 :T - SetUpConnect, AR3 :T - PrintReceipt should never be in the

Failed state, so for example, DetectCashAmount should never fail or SetUpCon-

nect should never fail and so forth. Aggregate AwReqs place some constraints

over collection of instances. In AR4, all the instances of the domain assump-

tion Connection to Banking Network, D - CommBankNet, are obtained in a

set. Then the subset of the instances that succeeded will be retrieved among all

the instances. This result is obtained by using the select() operation. In the

end, the set of the succeeded instances is compared with the set of all instances

in order to declare that 99% of the instances are always successful. The date

comparison is used in order to show that the evaluation of the success rate is per-

formed considering only the past week. In AR5, all the instances of the domain

assumption Cash Dispenser, D - CashDispens are obtained in a set. Then the

5.1. FORMALIZING AWARENESS REQUIREMENTS 45

subset of the instances that succeeded will be retrieved among all the instances.

This operation is obtained by using the select() operation. In the end, the set

of the succeeded instances is compared with the set of all instances in order to

declare that 99% of the instances are always successful. The date comparison is

used in order to show that the evaluation of the success rate is performed con-

sidering only the past week. Also, for AR10 and AR12 the same operations

are applied to the respective instances of the tasks. AR14 is not about the suc-

cess/failure of any requirement but on the fact that the task Select Transaction

cannot be in the Undecided state for more than 30 Seconds. The formalization

shows that eventually the tasks Select Transaction should not be in the Unde-

cided state and the difference between the start and the end time should not be

more than 30 seconds. AR15, AR16, AR17 are delta AwReqs that talk about

not only the success of the requirements, but also the time elapsed to finish their

execution. So, from the main set of instances the select() operation singles out

the instances of G - DispenseCash in the case of AR15, the instances of T -

PerformDepTrans in the case of AR16, and T - PerformTransTrans in the

case of AR17. The invariant states that the related set should have exactly one

element that will be both successful and finish its execution within 3 (AR15)

or 6 (AR16, AR17) minutes of T Select Transaction’s end time. Figure

5.6 shows the formalization of the delta AwReqs elicited in the system. Delta

AwReqs specify invariants not over sets of instances, but over single instances of

the requirements.

46 CHAPTER 5. AWARENESS REQUIREMENTS FOR THE ATM SYSTEM

Figure 5.6: AwReqs formalization in OCLTM

Chapter 6

System Identification

This section describes the system identification process. It introduces some new

notations, like differential relations between parameters and indicators.

6.1 Goal Oriented Requirements Model

The ATM system requirements model is built as a goal-oriented requirements

model, in terms of goals, softgoals, tasks, quality constraints (QCs) and domain

assumptions (DAs). The main goal of the system, Provide ATM, which is AND-

decomposed in g2-Operator Start ATM, g4-Serve Customers and g25-Operator

Shutdown ATM. All of the sub-goals have to be executed in order to fulfill the

main goal. Also, g2 is AND-decomposed in the task a1-turn on ATM, and the

goal g3-Detect Cash Amount that is OR-decomposed in two tasks a2:Use Cash

Sensor, denoting that the cash amount is not detected by any operator but is

performed by some device, and a3:Use Operator Entry, meaning that there has

to be any operator detecting the cash amount, in order for the ATM to start.

These two tasks contributes to the fulfillment of the reduce operator workload

softgoal. The task a2 helps the fulfillment of the softgoal. On the other hand the

task a3 hurts the softgoal’s satisfaction. The DA Connection to Banking Network

Available must always be true in order for the operator to Start ATM. Also, in

order to perform Withdraw operation, Cash Dispenser Never Empty should be

true. The softgoal Reduce Customer Workload is one of the most important

softgoals, so in order to metricize this softgoal the clear-cut criteria for it will be

”transaction length to be between 3 and 6 minutes for the same user section”.

For the softgoal Maintains Physical Record, the criteria will be ”at least 95%

of the requests are printed”. Figure 6.1 shows a goal model enriched with the

domain assumptions and quality constraints identified at the ATM model.

47

48
C
H
A
P
T
E
R

6.
S
Y
S
T
E
M

ID
E
N
T
IF

IC
A
T
IO

N

Figure 6.1: ATM Goal Model

6.2. GOAL MODEL PARAMETERS IN ATM SYSTEM 49

6.2 Goal Model Parameters in ATM system

Another important aspect of the process refers to the identification variation

points (VPs), control variables (CVs) and indicators in the ATM requirements

model. The indicators will be monitored while the VPs and CVs can be con-

trolled. The monitored and controlled parameters represent a way to implement

reconciliation for adaptive systems at runtime. These parameters are introduced

much earlier in the development process, at the level of requirements.

Variation Points (VPs) and Control Variables (CVs) relate to indicators. The

OR-decompositions in goal models represents the Variation Points. Choos-

ing one path instead of another at a VP represents the binding of intentional

variability in the system. This variability allows for system re-configuration and

reconciliation between system requirements and runtime behavior of the system.

In the ATM system, five VPs have been identified and named VP1, VP2, VP3,

VP4 and VP5.

At VP1, when selecting the task to fulfill the goal detect cash amount, choosing

the task use operator entry instead of use cash sensor, the operator workload will

increase, so the softgoal reduce operator workload will be hurt.

At VP2, choosing asking the customer to insert the card over asking the cus-

tomer to input the card number, the customer workload will increase. Swapping

between the paths at VP2 provides a lot of information. So, if the customer in-

serts the card, his workload will be reduced but if the customer is asked to input

the card number, it will influence the system requirements much more, like the

efficiency softgoal will be denied, such as the customer workload will increase, so

Reduce Customer Workload will be hurt. All these kinds of information are very

important when deciding how to reconfigure the system in order to fulfill specific

requirements.

At VP3, during the authentication, if the customer is asked to enter the PIN

from the keypad instead of enter PIN from two-key keypad, the usability softgoal

will be affected. In the first case, it will have a positive contribution and in the

second case it will be negatively affected.

At VP4, during the selection of the way the customer will enter the card num-

ber, if the path where the customer enters the card number from keypad is chosen

then the usability softgoal will have a positive contribution. Otherwise if the cus-

tomer is asked to enter the card number from a two-key keypad then the usability

softgoal will be hurt.

Finally, at VP5, in order to fulfill the goal dispense cash, when the task success-

fully dispense cash is selected over print compensation token task, the customer

workload will be reduced. All this information will be helpful when selecting

to adapt the system, exploiting the fact that different choices in different VPs

have different contributions to NFRs of the system (reduce customer workload,

reduce operator workload, increase efficiency or increase usability). Based on the

50 CHAPTER 6. SYSTEM IDENTIFICATION

satisfaction of a desired NFR, the proper choice in any VP will be selected to

reconcile the system behavior and the system requirements.

Another powerful mechanism for system (re)configuration is represented by the

Control Variables. Control Variables are derived from families of related but

slightly different goal/task or DAs alternatives. System behavior is influenced by

the set of Control Variables, so its execution, success rate or quality of service can

be different for different values of CVs. Control Variables are part of the system

input and can be applied to the goals, tasks or domain assumptions. They rep-

resent abstractions over goals or domain model fragment. The benefits of having

Control Variables include the ability to represent large number of model varia-

tions in a compact way as well as the ability to concisely analyze how changes in

CV values affect the system success rate or quality of service (e.g. when Serving

Customers, Starting ATM, etc.).

Starting from one of the high level goals, Serve Customers, the NOA (Number of

Operators Available) is the CV that affects the success rate of this goal. This CV

has to do with the number of operators available for providing help or explana-

tions about how to use the ATM system. The NOA can have 3 values depending

on the customer attendance rate. So, from 8:30 am to 10:30 am and from 2:30 pm

to 4:30 pm, there is only one operator available, but from 10:30 am to 12:30 am

there will be 2 operators available. Once the customer asks at the front office for

any help, the operator will give all the relevant instructions. Out of these time

intervals there are no operators available. So the success rate of Serve Customer

can be defined over this control variable. The simplified linearized notation can

describe how the changes of this CV affect the success rate of the goal Serve

Customers.

4 (〈success rate of Serve Customers〉 /NOA) > 0

This relation shows how the value of the CV affects the success rate of the

goal: by increasing the number of operators the success rate increases. If there

are two operators available instead of only one, the success rate of the goal will

grow, and so forth. Adding more operators it will help the success rate of Serve

Customers to increase. As shown by the goal model, in order to fulfill the goal

Customers Enters Card Number, the customer can enter the card number from

keypad (task a7) or enter the card number from two-key keypad. A CV that

can affect the success rate of this goal is NNIR (Number of New Information

Required). In some cases, we can also have a customer that for some reason enters

an incorrect card number several times or it can also be the case that someone

can steal the card number of any customer. In order to have a more secure and

complete customer identification, additional information may be required. This

information can be : date of birth, ID card number and an answer to some secrete

6.2. GOAL MODEL PARAMETERS IN ATM SYSTEM 51

question. So, the success rate of the goal Customer Enters Card Number can be

defined over this control variable. Using simplified linearized notation we can

describe how the changes of this CV affect the success rate of the goal Serve

Customers.

4 (〈success rate of Customers Enter Card Number〉 /NNIR) > 0

So, more information is asked from the customer in addition to the card

number, the greater the success rate of the goal is. Obviously, we cannot ask for to

much additional information, otherwise it increases the risk of having unsatisfied

clients.

One of the domain assumptions in order for the ATM system to be operative is

Cash Dispenser Never Empty. Although there will be some different situations,

like days of the week, weekends or holidays. Based on the cash needed to fulfill

client’s needs the cash dispenser should be loaded. Another CV is identified,

AAM (Available Amount of Money). This variable will have different values on

different days. Normally, the cash dispenser is loaded with a specific amount of

money, but if it is a holiday or a weekend, it must be charged three/four times

the ”normal” daily amount. The value of this CV will affect the value of the goal

Withdraw, which is a critical one. By increasing the value of the CV for specific

situations, the success rate of the goal will grow. Using simplified linearized

notation we can describe how the changes of this CV affects the success rate of

the goal Serve Customers.

4 (〈success rate of Withdraw〉 /AAM) > 0

In order to fulfill the goal Customer Withdrawal Specifics, the task a14 (get

withdrawal account) and the task a15 (get withdrawal amount) must be executed.

The withdrawal amount will not be greater than a limit value specified by the

bank. But, using the operations (withdrawal, transfer, and so forth) a customer

performs in different ATMs (belonging to other banks) the account details are

not always updated just in time. Then some of the account policy is not followed

(”broken accounts”), meaning the daily limit is overlapped, and this should not

be allowed. Based on the number of the ”broken accounts” the bank will consider

the possibility of decreasing the daily limit. The VDL (Value of Daily Limit)

value will affect the success rate of the task a15, get withdrawal amount. But, in

this case by decreasing the value of the control variable the success rate of the

task a15 will increase. The Value of Daily Limit can also be increased in the case

there is no ”broken accounts” in the last quater/half of year. Using simplified

linearized notation we can describe how the changes of this CV affects the success

rate of the goal Serve Customers, if the value of the daily limit is decreasing.

4 (〈success rate of Get Withrawal Amount〉 /VDL) > 0

52 CHAPTER 6. SYSTEM IDENTIFICATION

Using simplified linearized notation we can describe how the changes of this

CV affects the success rate of the goal Serve Customers.

4 (〈success rate of Get Withrawal Amount〉 /VDL) < 0

Another control variable is identified in order to improve some of the NFRs of

the system. Before the system ejects the card, the customer will be asked if he/she

can answer to some questions about the ATM system. The control variable CF

(Customers Feedback) represent the number of transactions elapsed between the

surveys. So, the success rate of goal Serve Customers (one of the top-level goals)

will depend on the values of the CF control variable. These quantitative answers

need to be translated into how the system must be improved to better satisfy the

clients. The questions will be:

1. Did it take too long to perform an operation?

2. How did You find the money denomination during the withdrawal?

3. What is Your opinion on the operator’s support?

And the answer will be selected among four possible choices :

1. Bad

2. Sufficient

3. Good

4. Excellent

Based on the answers of the customers, some aspects of the system may be

improved in order to positively affect the customer satisfaction. So, the success

rate of the goal Serve Customer will be affected given the changes based on the

customer feedback, but also the customer’s happiness level will be affected. If

the number of elapsed transactions is too small then maybe the same customer

performing, for example, more than 3/4 transaction, needs to reply twice at

the survey questions and this will negatively affect his mood. Using simplified

linearized notation we can describe how the changes of this CV affects the success

rate of the goal Serve Customer and also will not make customers unhappy

because of wasting time on surveys.

4 (〈success rate of Serve Customers〉 /CF) < 0

Figure 6.2 gives a taste of the graphical representation of the parameters

introduced so far in the goal model.

6.2.
G
O
A
L
M
O
D
E
L
P
A
R
A
M
E
T
E
R
S
IN

A
T
M

S
Y
S
T
E
M

53

Figure 6.2: A graphical representation of parameters

Chapter 7

Conclusions and Future Work

This thesis presented an evaluation of System Identification process on an Au-

tomated Teller Machine (ATM) as a systematic approach conducted in modeling

parameter-indicator relations based on the available information. Concerning the

stated objectives, we have performed the following main steps.

1. indicators identification. During this phase a deeper analysis was per-

formed on the system requirements model. So, we focused on the most

relevant part of the requirements which can lead to self-adaptivity capabil-

ity. In the applied approach the AwReqs represent the starting point for

the indicators identification. Going deeper allows a better understanding of

the system requirements, what can be the critical goals/tasks and domain

assumptions in terms of variables’ monitoring. This process did not require

too much cognitive effort, but on the other hand it was time-consuming.

2. identification of parameters. During this step we identified possible

variations in the goal model, such as Variation Points and Control Vari-

ables. The modification of these parameters could lead to a system recovery

from possible failures or to improvements of the system performance. The

variation points (VPs) are easy to locate in the model. They are repre-

sented by the OR-decompositions in the model, which can be easily recog-

nised. Instead, the control variables (CVs) are part of the system input.

They are not easy to compute as they represent abstractions over goals/-

domain fragments. CVs can allow to represent variation in the model and

the modification of such parameters could also affect the indicators. The

CVs elicitation is taking into account the AwReqs, such that for each pa-

rameter’s change the related AwReq will be positively affected. The stated

task was the most complicated stage of the experiment. In order to come

55

56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

up with these parameters a better knowledge on the application domain is

needed and the derived abstractions should be linked to the AwReqs.

3. identification of qualitative differential relations. At this step, for

every indicator we had to find the parameter that can affect such indicator.

Some heuristics were used, such as contribution links to the softgoals (in the

case of VPs), capturing parameter to some indicator sub-tree, and so forth.

In this phase Qualitative Reasoning ideas were also used as we were deal-

ing with partial knowledge of the system. We used a simplified linearized

notation to describe the binding between parameters and indicators.

To give some examples, in case of the indicator related to the AwReq which refers

to Detect Cash Amount goal the possible variation is represented by a Variation

Point that either can be performed by the task Use Cash Sensor or by the task

Use Operator Entry. The controller in this case will change the value of such VP

based on the contribution links each of them has to the softgoal Reduce Operator

Workload. Also in the case of the indicator related to the AwReq that refers to

the domain assumption Cash Dispenser Never Empty the controller can change

the value of the VP from successfully dispense cash to print compensation token

if such indicator has failed. Considering the goal Serve Customers the parameter

that affects this indicator is the Number of Operators Available. Such indicator

should fail at most twice in a month, so in order for this requirement to converge

the controller can change its value by selecting from the set [0, 1, 2]. By increas-

ing the number of operators, different behaviors of the system are represented,

every variation has a different impact on the goal Serve Customers.

The System Identification represents a sistematic process of requirements

analysis. At this stage we are going not only to accommodate what are the

features and the purposes of the system, but also to extend the requirements

model with new concepts from Control Theory, with the aim to represent differ-

ent situations/behaviors of the system still in a compact way (by means of VPs

and CVs). If we think of representing such behaviors of the system without these

new concepts, probably different requirements models would have been neces-

sary in order to represent all the possible situations. So, it allows to describe

the system’s behavior concisely as well as exhaustively. Then the adaptation ac-

tion could be performed by the controller. In this way the system identification

process contributes not only to recovery from failures and system performance

improvement, but also positively contributes to the system robustness. During

the reconfiguration process controller will also take into account the softgoal sat-

isfiability, as far as specific clear-cut criteria were imposed in the model. This

experiment showed the possibility of decreasing the maintanance costs of the

ATM system. As far as future benefits, dealing with adaptivity in early stages

of the software process can reduce maintenance costs for the project, although

57

one should make sure these savings are greater than the cost of doing System

Identification in the first place.

During the experiment we realized that there is no CASE Tool which can sup-

port the carious diagram creation or even to convert the AwReqs patterns into

OCLTM representation. What can also be useful is a method that can help to

estimate if the eventual parameter change is going to allow us to achieve the

desired objective.

Based on the stated qualitative relations the controller will perform a parameter

change in order to affect positevely the related indicator. Even though the rela-

tion can describe the impact of the parameter change on the specific indicator,

it cannot predict it in a quantitive way. However by introducing the ”landmark”

concept, we can predict that out of some range of values the parameter change

will not affect the indicator any more.

In future works another step could be added to the evaluation of this process, e.g.

such as the relations refinement, meaning the comparison or the combination of

the initial equations.

Despite the experiment showed good results, more experiments are needed in

order to estimate the approach above. Possible future work can use the infor-

mation provided from the evaluation of Awareness Requirements for monitoring

the system’s requirements at runtime. Given the indication whether the system

requirements have been met, it can be possible to identify how to improve in-

dicators (in case of failure) by modifying the parameters introduced in the

System Identification process to provide adaptivity actions that will be taken

by the controller during reconciliation. An adaptivity framework can be used to

perform a parameter tuning and reason about possible adaptation strategies to

adopt in case of failures.

Some possible adaptation strategies can be:

• reconfigure, by identifying possible parameters that can be modified in

order to meet requirements congruence (given any requirement failure)

• abandon, if it is the case that there is no possible parameter to be tuned

or tuning some parameter can bring to conflicting effects on more than one

indicators.

• evolution [12], by modifying the requirements model in a specific way

with the aim of adapting it to some expected situation. Based on some

requirements performance triggers the model can be transformed.

Other possible future work can take into account also context information, how

properties of the environment can affect the system requirements. The relation

parameter-indicator can also depend on environmental properties. It can be also

interesting in future to consider not only reactive actions (adaptation actions to

58 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

adopt after failures occurred) but also to consider proactive reasoning (proba-

bilistic reasoning on failures that can appear on the software system)

Bibliography

[1] T. Abdelzaher, Y. Diao, J.L. Hellerstein, C. Lu, and X. Zhu. Introduction

to control theory and its application to computing systems. Performance

Modeling and Engineering, pages 185–215, 2008. [cited at p. 11]

[2] M.S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard. Reconciling

system requirements and runtime behavior. In Proceedings of the 9th in-

ternational workshop on Software specification and design, page 50. IEEE

Computer Society, 1998. [cited at p. 21]

[3] I.J. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology

and problem in requirements engineering. In International Requirements

Engineering, 2008. RE’08. 16th IEEE, pages 71–80. IEEE, 2008. [cited at p. 9,

10]

[4] R. Laddaga and P. Robertson. Self adaptive software: A position paper.

In SELF-STAR: International Workshop on Self-* Properties in Complex

Information Systems, volume 31. Citeseer, 2004. [cited at p. 19]

[5] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards

requirements-driven autonomic systems design. In ACM SIGSOFT Software

Engineering Notes, volume 30, pages 1–7. ACM, 2005. [cited at p. 22]

[6] P.K. McKinley, B.H.C. Cheng, and C.A. Ofria. Applying digital evolution

to the development of self-adaptive uls systems. In Software Technologies

for Ultra-Large-Scale Systems, 2007. ULS’07. International Workshop on,

page 2. IEEE, 2007. [cited at p. 5]

[7] W. Robinson. Extended ocl for goal monitoring. Electronic Communications

of the EASST, 9(0), 2007. [cited at p. 8]

[8] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and re-

search challenges. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 4(2):14, 2009. [cited at p. 19, 20]

59

60 BIBLIOGRAPHY

[9] V. Silva Souza, A. Lapouchnian, and J. Mylopoulos. System identification

for adaptive software systems: A requirements engineering perspective. Con-

ceptual Modeling–ER 2011, pages 346–361, 2011. [cited at p. 6, 7, 9, 15, 23]

[10] V.E. Silva Souza, A. Lapouchnian, W.N. Robinson, and J. Mylopoulos.

Awareness requirements for adaptive systems. 2010. [cited at p. 5, 12, 23, 43]

[11] V.E.S. Souza and J. Mylopoulos. From awareness requirements to adaptive

systems: a control-theoretic approach. In Requirements@ Run. Time (RE@

RunTime), 2011 2nd International Workshop on, pages 9–15. IEEE, 2011.

[cited at p. 11]

[12] Lapouchnian A. Souza V. E. S. and J. Mylopoulos. Evolution requirements

for adaptive systems. 2012. [cited at p. 57]

[13] Y. Wang and J. Mylopoulos. Self-repair through reconfiguration: A require-

ments engineering approach. In Proceedings of the 2009 IEEE/ACM In-

ternational Conference on Automated Software Engineering, pages 257–268.

IEEE Computer Society, 2009. [cited at p. 22, 31, 33]

[14] J. Zhang and B.H.C. Cheng. Using temporal logic to specify adaptive pro-

gram semantics. Journal of Systems and Software, 79(10):1361–1369, 2006.

[cited at p. 21]

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Methodology
	1.4 Organization of the thesis

	2 Research Baseline
	2.1 Goal â�� Oriented Requirements Engineering (GORE)
	2.2 Awareness Requirements
	2.3 System Identification

	3 Related Work
	4 Case Study
	4.1 Case Study Description
	4.2 ATM Goal Model

	5 Awareness Requirements for the ATM system
	5.1 Formalizing Awareness Requirements

	6 System Identification
	6.1 Goal Oriented Requirements Model
	6.2 Goal Model Parameters in ATM system

	7 Conclusions and Future Work
	Bibliography

